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Abstract. We study the breaking of the replica symmetry in spin glasses. We find that the 
order parameter is a function on the interval 0-1. This approach is used to study the 
Sherrington-Kirkpatrick model. Exact results are obtained near the critical temperature. 
Approximated results at all the temperatures are in excellent agreement with the computer 
simulations at zero external magnetic field. 

1. Introduction 

Magnetic transitions in ferromagnetic or antiferromagnetic materials are well under- 
stood theoretically; one of the most interesting open problems is the nature of the 
transitions in spin glasses (i.e. systems which are neither ferromagnetic nor antifer- 
romagnetic, because the sign of the exchange interaction changes randomly from bond 
to bond). Spin glasses are the simplest amorphous materials we can study; we face the 
problem of finding the order parameter which is appropriate to describe the onset of 
ordering in a disordered medium. 

The general framework in which we study this problem is the replica theory 
(Edwards and Anderson 1975). The main idea is rather simple: the free energy (FR) of 
a random system can be written as 

where J stands for the random variables, k[J] is their probability measure (normalised 
to 1) and F [ J ]  is the J-dependent free energy. In spin glasses: 

where vi are the spin variables, p(cr) is their distribution (in the Ising model p ( v )  = 
S(a2 - 1)) and N is the number of spins. 

Equations (1) and (2) are not easy to study under this form, because FR is not written 
as the integral of the exponential of an Hamiltonian, as normally happens. In order to 
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present the problem under a more familiar form, it is useful to introduce the function 

2, =- d[J]p[[J]Z"[J]. 
n 'I 

Obviously one has: 

Now, for integer n, Z,, can be written as: 

where cry are n x M spin variables. 
Equation ( 5 )  is the partition function of n identical replicas of the same system, 

interacting with the same J-dependent Hamiltonian. 
The strategy consists in finding the partition function 2, for generic integer n and 

finally performing the analytic continuation up to the point n = 0. In this way one is led 
to introduce, as an order parameter, the n x n matrix: 

QpsP =(*y,f) ff + P  ( 6 )  
and a physical order parameter: 

where the internal bracket indicates the thermodynamic expectation value at fixed J, 
while the external bracket indicates the mean value over J. 

In the high-temperature phase ( l / N )  2, Q?* = Qap = 0, while in the spin glass phase 
Qap # 0. In the standard treatment it is assumed that Qep = q independently from cy 
and p. This possibility is the only one symmetric under permutations of the replicas. In 
this scheme 4 = q. 

In order to test the correctness of this approach, it is useful to investigate a model 
(the S-K model) (Sherrington and Kirkpatrick 1975) in which the mean field approxi- 
mation should be exact; this model consists of N Ising spins interacting one with all the 
others with a random Gaussian interaction ((Jfk) = l / N ) .  Assuming that Qap = q, the 
model can be solved, using the saddle point method when N + 00. One finds that 

PFR(T) = max F T ( ~ )  

- ( 2 ~ ) - ' "  I dz(exp( -g) In[cosh(~q""r)]} p = 1/T. (8) 

A transition is present at T = 1 and q # 0 when T < 1. 
From the knowledge of FR( T )  other thermodynamical quantities, like the specific 

heat (U(7')) and the entropy (S (T) ) ,  can be calculated. However the results disagree 
with the computer simulations (Sherrington and Kirkpatrick 1978) for N = 500, 
extrapolated up to N = OD (e.g. the computer simulations give U(0) = -0.76 f 0.01 
while this analytic method gives U(0)  = --d2/7r= -0.80). The situation worsens if we 
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consider the entropy: by definition S ( T )  is non-negative and equation (8) implies a 
negative value of S at low temperatures (S(0) -- -0.17 while S(m) =In 2 = 0.69). 

The origin of this failure remained unexplained for some time: it is possible to blame 
the exchange of limits n+O with N + c o  (Van Hemmer and Palmer 1979) but no 
constructive approach can be found to avoid this difficulty. 

It has been finally remarked (de Almeida and Thouless 1978, Pytte and Rudnik 
1979) that the correct expression is 

FR= T maxFT(Q) 

where Tr stands for the sum over all the 2" possible values of the n Ising spin variables 
S ,  and the maximum is taken over all possible matrices Q+ Equation (8) is correct 
only if F(U) has its maximum at a symmetric point; in reality the symmetric point is only 
a saddle point. This can be seen by computing the eigenvalues of the matrix 
defined by 

where 4' maximises equation (8). 
A straightforward computation shows that the matrix M has negative eigenvalues 

for T <  1. The replica symmetry invariant point does not maximise F ( Q )  and replica 
symmetry must be broken: we have to look for solutions of equation (9) which are not 
symmetric in a and p. 

We face the rather difficult problem of parametrising an n x n matrix in the limit 
n = 0. To work directly in zero-dimensional space is rather difficult; to circumvent this 
problem we will define also the matrix Quo by analytic continuation. We define an n x n 
matrix Q?; which depends on a set of parameters {qi, mi} (e.g. the qi are the elements of 
the matrix and the mi describe the form of the matrix). With a suitable choice of the 
parametrisation FT(Q(") )  can be extended to an analytic function of n (at this end we 
need that QgA is defined only for n multiples of a fixed integer) and the maximum of 
FT( Q) should be taken over all the possible parametrisations. 

It is evident that the number of different parametrisations is unbounded and the 
space of 00 0 matrices with these definitions is an infinite dimensional space. 

The search for a maximum is not simple in such a big space. We have been guided by 
the following three requirements: 

N N 

1 1 
C P  Q ~ P  C P  QM a f Y  

i 
1 

-1im - Q?,, L 0. 
"40 n 

Requirement ( l l a )  comes from the condition that FR must be finite; the eigen- 
vectors with negative eigenvalue of the matrix M satisfy requirement (1 16): it is natural 
to look for a maximum of FT(Q) in the space spanned by these vectors; at high 
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temperatures we want the maximum of F T ( Q )  located at Q,,@ = 0 and this happens only 
if condition ( l l c )  is satisfied. We recall that the saddle point method can be applied 
only if the matrix M has non-negative eigenvalues: this condition implies that the 
function F ( Q )  must be maximised, when it is restricted to the subspace where the 
condition (1 I C )  is identically satisfied. 

Although the requirements (11) do not fix the symmetry breaking pattern, they 
exclude those previously proposed (Blandin 1978, Bray and Moore 1978). In the first 
case requirement (1 IC)  is not satisfied, in the second case requirement (1 l a )  is violated. 
In this paper we investigate the simplest parametrisations of the matrix Q,,@ satisfying 
requirements (11). 

In § 2 we describe the parametrisations we propose and we show that a function q ( x )  
defined on the interval 0-1 is naturally associated to each parametrisation of the class 
we consider. In this approach the order parameter belongs to L2(0, 1). If replica 
symmetry is unbroken q ( x )  is a constant. In simple approximation schemes q ( x )  is a 
piecewise constant function which takes only a finite number of values. A direct 
interpretation of q ( x )  is lacking although it may have the meaning of probability 
distribution. This point deserves more accurate investigations. 

In Q 3 we apply this approach to the study of the S-K model near T,. In Q 4 we show 
how a very simple-minded approximation ( q ( x )  takes only two values) is sufficient to 
obtain a substantial improvement with respect to the situation with unbroken replica 
symmetry for the S-K model at all the temperatures (e.g. we obtain U(0)  --- -0.765 and 
S(0)  = -0.01). 

2. The parametrisation 

In this paper we will study the following parametrisation of the matrix Q,,@ (Parisi 
1979b): 

where qi(i = 0, K )  are real numbers and mi (i = I ,  K )  are integer numbers such that 
mi-l/mi is an integer (i 3 1). (We let mo = 1, m K + 1 =  n.) 

The matrix Qa,@ depends on K + 1 real parameters (the q i )  and on K integer 
parameters (the mi). For IZ = 8, K = 2, ml  = 2 ,  m2 = 4, we have: 

We do not have any serious argument to justify the ansatz equation (12) (apart from 
the requirement (11)). Its main virtue is its simplicity. It is not evident a priori if the 
solution of the variational problem, equation (9), has the form dictated by equation 
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(12). The only possible justification of the ansatz equation (12) is its ability to reproduce 
the results of the computer simulations, as we shall see in § 4. 

We must now continue the matrix Qap up to n = 0. In doing so it is not evident if the 
mi must remain integers. We suppose that for non-integer n, no conditions on the mi, 
are present, i.e. they can be arbitrary real numbers (Parisi 1979a). However, we want 
conditions (1 1) to be satisfied. 

Conditions (1 l a )  and (1 16) are identically satisfied while condition (1 IC) implies 

1 a m 5 m2 . . . mK 5 0. (14) 

Equation (14) follows from the relation: 

The scheme of Blandin (1978) is K = 1, ml = 2 and obviously does not satisfy 

It is natural to define the function q ( K ) ( x )  as 
condition ( l l c ) .  

q ( K ’ ( X )  = 4i if mi < x < mi+l. (16) 

By definition we have: 

q ‘ K ’ ( ~ )  is a piecewise function which takes at most K + 1 different values. In the limit 
K + 03, we obtain a generical function of L2(0, 1). Io the next section we will argue that 
the maximum of equation (9) is reached in the limit K + 03. 

At this stage it is unclear if the sequence of functions q ( K ’ ( x )  converges toward a 
function q ( x )  when K + 03. We shall verify that this happens in an explicit example in 
the next section. 

3. Analytic results near T, 

Near the critical temperature T, (T,= 1) the matrix QmP is small (proportional to 
T = T,- T )  so that it is reasonable to expand it in powers of Q. 

One finds (Bray and Moore 1978, Pytte and Rudnik 1979): 

F T ( Q )  = lim(-.r Tr Q2 +-$ Tr Q3 + y c a , p  a“,,, + O(Q4))/n 
n-bO 

where Tr is the standard trace in the n-dimensional vector space. Among the various 
terms of fourth order we have written the only one which is responsible for the breaking 
of the replica symmetry. 

Indeed, if y L 0 the symmetric solution would be a maximum and not a saddle point. 
In the S-K model y is negative and replica symmetry is broken. We will study in detail 
the case y = -a and look for a maximum of F ( Q )  with Qu,@ = O(T).  

After some algebra one finds that 
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where the parametrisation (12) has been used and the function q ( x )  is defined by 
equation (6) (for simplicity we have written q ( K ) ( ~ )  as q(x)). 

Equation (19) can also be written using the parameters qi and mi as: 

At fixed K we look for a local maximum of F(Q),  under the conditions qL = O(T).  
One finds: 

qo  = 7 + ~ ( ~ ) 7 ~  + 0(2) 
qi = B ! ~ ’ T  + 0 ( T 2 )  

mi = L;Y’T + o(T’). 

After some painful algebra one obtains: 

K 2(K-i)+1 B ,  = 
3 1 
2 (2K+lY 2K+1 

p’ =I_ 

When K + 00 the function q ( K ) ( ~ )  converges toward: 

q ( X )  =-+o(T2) i fxc3 . r  3 

q(x) = T + o(T’) if x > 37. 

X 

In figure 1 we have shown the function q ( K ) ( ~ )  taking only the terms of O ( T ) ,  for 
K = 1,4 and 00. 

It would be tempting to interpret q ( x )  as the mean value of the parameter q 
(equation (7)) inside a cluster of size xN, but the rationale for this interpretation is rather 
mysterious. 

If we consider the internal energy U ( T )  = dF/d.r, we find that 

where: 

viK,”’ =$- (2K+l )4 .  1 

It is remarkable that U$“’ for K = 1 differs from the exact result by less than 1% ; we 
expect rather good results at all temperatures from the approximation K = 1; this 
expectation is confirmed from the results of the next section. 

For completeness we also write the result: 
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q 06  

X 

Figure 1. The broken curve, chain curve and full curve are, respectively, the function 
q‘K)(r )  for K = 1 , 4  and CO in units of 7. 

At this stage it is unclear which of the two equations is correct for q (equation (7)): 

This ambiguity can be clarified by studying the magnetic properties of a spin glass; 
this task goes beyond the limits of this paper and it will be dealt with in  a future 
publication. 

4. All temperatures 

In the previous section we have seen that the approximation K = 1 gives very good 
results near T, = 1. We study it now at all temperatures. 

One finds (Parisi 1979a): 

P 2  p ~ ( p ,  tm) = ---[I + mp2+(1 - m ) ( p  + t)*-2(p + t ) ]  4 
2 

+ln 2-(27r)-’/’/ dr[ exp( --?)m-’ 

xln[(27r)-”’ / dy exp( -$) cosh“(pp’/’z +pt1’2y) I1 
where q1= p and go = p + t. 
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If m = 0 or t = 0 we recover the result without breaking of the replica symmetry 
(K  = 0) (equation (8 ) ) ,  where q = p + t. 

The internal energy is given by: 

U(7) = -P(1 -q2)/2 q 2  = mp2 + (1 - m ) ( p  + t)’. (29) 

We must now maximise equation (28) as a function of p, t and m. This has been done 

One finds that for T > T, = 1 : 
on a computer using a standard minimisation program. 

p = t = o .  

For T < 1, p, t and m are all different from zero and the K = 1 free energy is always 
greater than the K = 0 free energy. In figures 2, 3 and 4 we show, respectively, the 
internal energy, the specific heat and the entropy as functions of T, both for K = 0 and 
K = 1. As expected, the difference between the two approximations is relevant only for 
T<0 .5 .  For comparison we plot also the low-temperature C ( T )  and S ( T )  obtained 
using a different approach (Thouless et a1 1977). 

The entropy is negative for T < 1  and S(0)  is negative although quite small 
(S(0) = -0.01); we expect that S(0) = 0 only for infinite K. A substantial improvement 
has been obtained with respect to K = 0. The computation of the entropy for K = 2 
would be rather long, but straightforward. 

The values shown in figures 1, 2, 3 and 4 are in excellent agreement with the 
computer simulations (e.g. U(0)  = -0.765, while the computer simulations suggest 
U(0)  = -0.76 f 0.01) (Sherrington and Kirkpatrick 1978). 

I 1 

T 

Figure 2. The lower and upper curves are, respectively, the internal energy U ( T )  for K = 0 
and K = 1. 
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T 

Figure 3. The lower and the upper curves are, respectively, the specific heat C ( T )  for K = 1 
and K = 0. The broken curve is the prediction C ( T )  = 2 In 2 T 2 + O ( T 3 )  (Thouless er al 
1977). 

1 I I I I I 
0 0 2  0 6  1 

T 

Figure 4. The lower and the upper curves are, respectively, the entropy S ( T )  for K = 0 and 
K = 1. The broken curve is the prediction S ( T )  =In 2 T 2 + O ( T 3 )  (Thouless er a/  1977). 
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T 

Figure 5. The lower and the upper curves are, respectively, the parameter qo as a function of 
T for K = 0 and K = 1. Just for comparison the broken curve is the prediction for the 
function $ ( T )  (Thouless et a1 1977): $ ( T )  = 1-2(ln 2)1’2T2+O(T3).  

0 

0 

m 

c 

T 

Figure 6, The parameter m l  for K = 1 as a function of T. 
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5 
1111 

T 

Figure 7. The lower and the upper curves are, respectively, the parameters f and p for K - 1 
as functions of T. 

For completeness we show in figure 5 the parameter q o  both for K = 0 and 1. The 

The value of 4" is not shown: it would be a curve slightly lower than qo for K = 0. 
In figures 6 and 7 we show the T dependence of p ,  t and m. It is interesting to note 

that m becomes zero both at T = 0  and T = l ,  and that the ratio t / p  decreases 
monotonously with the temperature from t / p  = 2 at T = 1 to t / p  = 1 at T = 0. 

It seems that this approach leads to the exact solution of the S-K model in the limit 
K .+ CO; a crucial test of this conjecture would be obtained by calculating the ther- 
modynamic quantities for higher K and by studying the dependence on the magnetic 
field of the computer simulations. 

broken line is the prediction of TAP for q (Thouless et al  1977). 
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